Part Number Hot Search : 
FOA5401 DSP56 1N4003G NTE7025 MC68851 QPF7N65C EVKIT SM1624
Product Description
Full Text Search
 

To Download AD9540 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 655 MHz Low Jitter Clock Generator AD9540
FEATURES
Excellent intrinsic jitter performance 25 Mb/s write-speed serial I/O control 200 MHz phase frequency detector inputs 655 MHz programmable input dividers for the phase frequency detector (/M, /N) {M, N = 1..16} (bypassable) Programmable RF divider (/R) {R = 1, 2, 4, 8} (bypassable) 8 programmable internal clock rates Programmable edge delay with 93 fS resolution 1.8 V supply for device operation 3.3 V supply for I/O, CML driver, and charge pump output Software controlled power-down 48-lead LFCSP package Programmable charge pump current (up to 4 mA) Multichip synchronization Dual-mode PLL lock detect 655 MHz CML-mode PECL-compliant driver
APPLICATIONS
Clocking high performance data converters Base station clocking applications Network (SONET/SDH) clocking Gigabit Ethernet (GbE) clocking Instrumentation clocking circuits
FUNCTIONAL BLOCK DIAGRAM
AVDD AGND DVDD DGND VCML VCP CP_RSET
CP REF, AMP REFIN M DIVIDER REFIN N DIVIDER SYNC_IN/STATUS SYNC, PLL LOCK PHASE FREQUENCY DETECTOR CHARGE PUMP CP
CLK2 CLK2
CLK1 DRV_RSET CLK1 DIVIDER 1, 2, 4, 8 SCLK SDI/O SDO CS TIMING AND CONTROL LOGIC S2 S1 S0 SERIAL CONTROL PORT CLK DIVCLK CML OUT0 OUT0 VCML
PHASE/ FREQUENCY PROFILES
48 14 DDS 10 DAC
IOUT IOUT
04947-001
DAC_RSET
Figure 1.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 (c) 2004 Analog Devices, Inc. All rights reserved.
AD9540 TABLE OF CONTENTS
Product Overview............................................................................. 3 Specifications..................................................................................... 4 Loop Measurement Conditions.................................................. 9 Absolute Maximum Ratings.......................................................... 10 ESD Caution................................................................................ 10 Pin Configuration and Function Descriptions........................... 11 Typical Performance Characteristics ........................................... 13 Typical Application Circuits.......................................................... 18 Application Circuit Descriptions ............................................. 18 General Description ....................................................................... 19 PLL Circuitry .............................................................................. 19 CML Driver ................................................................................. 19 DDS and DAC ............................................................................ 20 Modes of Operation ....................................................................... 21 Selectable Clock Frequencies and Selectable Edge Delay ..... 21 Synchronization Modes for Multiple Devices.............................. 21 Serial Port Operation ..................................................................... 22 Instruction Byte .......................................................................... 23 Serial Interface Port Pin Description....................................... 23 MSB/LSB Transfers .................................................................... 23 Register Map and Description ...................................................... 24 Control Function Register Descriptions ................................. 27 Outline Dimensions ....................................................................... 32 Ordering Guide .......................................................................... 32
REVISION HISTORY
7/04--Revision 0: Initial Version
Rev. 0 | Page 2 of 32
AD9540 PRODUCT OVERVIEW
The AD9540 is Analog Devices' first dedicated clocking product specifically designed to support the extremely stringent clocking requirements of the highest performance data converters. The device features high performance PLL circuitry, including a flexible 200 MHz phase frequency detector and a digitally controlled charge pump current. The device also provides a low jitter, 655 MHz CML-mode, PECL-compliant output driver with programmable slew rates. External VCO rates up to 2.7 GHz are supported. Extremely fine tuning resolution (steps less than 2.33 Hz) is another feature supported by this device. Information is loaded into the AD9540 via a serial I/O port that has a device write-speed of 25 Mb/s. The AD9540 frequency divider block can also be programmed to support a spread spectrum mode of operation. The AD9540 is specified to operate over the extended automotive range of -40C to +85C.
Rev. 0 | Page 3 of 32
AD9540 SPECIFICATIONS
AVDD = DVDD = 1.8 V 5%; DVDD_I/O = CP_VDD = 3.3 V 5% (@ TA = 25C), DAC_RSET = 3.92 k, CP_RSET = 3.09 k, DRV_RSET = 4.02 k, unless otherwise noted. Table 1.
Parameter TOTAL SYSTEM JITTER AND PHASE NOISE FOR 105 MHz ADC CLOCK GENERATION CIRCUIT Converter Limiting Jitter1 Resultant SNR Phase Noise of Fundamental @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset 1 MHz Offset TOTAL SYSTEM PHASE NOISE FOR 210 MHz ADC CLOCK GENERATION CIRCUIT Phase Noise of Fundamental @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset @ 1 MHz Offset TOTAL SYSTEM TIME JITTER FOR CLOCKS 155.52 MHz Clock 622.08 MHz Clock RF DIVIDER/CML DRIVER EQUIVALENT INTRINSIC TIME JITTER FIN = 414.72 MHz, FOUT = 51.84 MHz FIN = 1244.16 MHz, FOUT = 155.52 MHz FIN = 2488.32 MHz, FOUT = 622.08 MHz RF DIVIDER/CML DRIVER RESIDUAL PHASE NOISE FIN = 81.92 MHz, FOUT = 10.24 MHz @ 10 Hz @ 100 Hz @ 1 kHz @ 10 kHz @ 100 kHz 1 MHz FIN = 983.04 MHz, FOUT = 122.88 MHz @ 10 Hz @ 100 Hz @ 1 KHz @ 10 kHz @ 100 kHz @ 1 MHz >3 MHz Min Typ Max Unit Test Conditions/Comments
720 59.07 80 92 101 110 147 153
fS rms dB dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz
79.2 86 95 105 144 151 581 188
dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fS rms fS rms 12 kHz to 1.3 MHz bandwidth 12 kHz to 5 MHz bandwidth
136 101 108
fS rms fS rms fS rms
R = 8, BW = 12 kHz to 400 kHz R = 8, BW = 12 kHz to 1.3 MHz R = 4, BW = 12 kHz to 5 MHz RF Divider R = 8
120 128 137 145 150 153 115 125 132 142 146 151 153
dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz RF Divider R = 8 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz
Rev. 0 | Page 4 of 32
AD9540
Parameter FIN = 1966.08 MHz, FOUT = 491.52 MHz @ 10 Hz @ 100 Hz @ 1 kHz @ 10 kHz @ 100 kHz @ 1 MHz >3 MHz FIN = 2488 MHz, FOUT = 622 MHz @ 10 Hz @ 100 Hz @ 1 kHz @ 10 kHz @ 100 kHz @ 1 MHz 3 MHz PHASE FREQUENCY DETECTOR/CHARGE PUMP REFIN Input Input Frequency2 /M Set to Divide by at Least 4 /M Bypassed Input Voltage Levels Input Capacitance Input Resistance CLK2 Input Input Frequency /N Set to Divide by at Least 4 /N Bypassed Input Voltage Levels Input Capacitance Input Resistance Charge Pump Source/Sink Maximum Current Charge Pump Source/Sink Accuracy Charge Pump Source/Sink Matching Charge Pump Output Compliance Range3 STATUS Drive Strength PHASE FREQUENCY DETECTOR NOISE FLOOR @ 50 kHz PFD Frequency @ 2 MHz PFD Frequency @ 100 MHz PFD Frequency @ 200 MHz PFD Frequency RF DIVIDER (CLK1 ) INPUT SECTION (/R) RF Divider Input Range Input Capacitance (DC) Input Impedance (DC) Input Duty Cycle Input Power/Sensitivity Input Voltage Level Min Typ 105 112 122 130 141 144 146 100 108 115 125 135 140 142 Max Unit dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz RF Divider R = 4 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz Test Conditions/Comments RF Divider R = 4
200
450 1500
655 200 600 10
MHz MHz mV p-p pF
200
450 1500
655 200 600 10 4 5 2 CPVDD - 0.5
0.5 2 148 133 116 113 1 3 1500 50
MHz MHz mV p-p pF mA % % V mA dBc/Hz dBc/Hz dBc/Hz dBc/Hz
2700
MHz pF % dBm mV p-p
DDS SYSCLK not to exceed 400 MSPS
42 -10 200
58 +4 1000
Single-ended, into a 50 load4
Rev. 0 | Page 5 of 32
AD9540
Parameter CML OUTPUT DRIVER (OUT0) Differential Output Voltage Swing5 Maximum Toggle Rate Common-Mode Output Voltage Output Duty Cycle Output Current Continuous6 Rising Edge Surge Falling Edge Surge Output Rise Time Output Fall Time LOGIC INPUTS (SDI/O, I/O_RESET, RESET, I/O_UPDATE, S0, S1, S2, SYNC_IN)7 VIH, Input High Voltage VIL, Input Low Voltage IINH, IINL, Input Current CIN, Maximum Input Capacitance LOGIC OUTPUTS (SDO, SYNC_OUT, STATUS)8 VOH, Output High Voltage VOH, Output Low Voltage IOH IOL POWER CONSUMPTION Total Power Consumed, All Functions On IAVDD IDVDD IDVDD_I/O ICPVDD Power-Down Mode WAKE-UP TIME (FROM POWER-DOWN MODE) Digital Power-Down (CFR1<7>) DAC Power-Down (CFR2<39>) RF Divider Power-Down (CFR2<23>) Clock Driver Power-Down (CFR2<20>) Charge Pump Full Power-Down (CFR2<4>) Charge Pump Quick Power-Down (CFR2<3>) CRYSTAL OSCILLATOR (ON REFIN INPUT) Operating Range Residual Phase Noise (@ 25 MHz) @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset >1 MHz Offset DIGITAL TIMING SPECIFICATIONS CS to SCLK Setup Time TPRE Period of SCLK (Write) TSCLKW Period of SCLK (Read) TSCLKR Serial Data Setup Time TDSU Serial Data Hold Time TDHD Data Valid Time TDV Min Typ 720 655 1.75 42 7.2 20.9 13.5 250 250 58 V % mA mA mA ps ps Max Unit mV Test Conditions/Comments 50 load to supply, both lines
100 terminated, 5 pF load 100 terminated, 5 pF load
2.0 1 3 2.7 0.4 100 100 400 85 45 20 15 80 12 7 400 6 10 150 20 25 95 120 140 157 164 168 6 40 400 6.5 0 40 30 0.8 5
V V A pF V V A A mW mA mA mA mA mW ns s ns s s ns MHz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz ns ns ns ns ns ns
Rev. 0 | Page 6 of 32
AD9540
Parameter I/O Update to SYNC_CLK Setup Time PS<2:0> to SYNC_CLK Setup Time Latencies/Pipeline Delays I/O Update to DAC Frequency Change I/O Update to DAC Phase Change PS<2:0> to DAC Frequency Change PS<2:0> to DAC Phase Change I/O Update to CP_OUT Scaler Change I/O Update to Frequency Accumulator Step Size Change DAC OUTPUT CHARACTERISTICS Resolution Full-Scale Output Current Gain Error Output Offset Output Capacitance Voltage Compliance Range Wideband SFDR (DC to Nyquist) 10 MHz Analog Out 40 MHz Analog Out 80 MHz Analog Out 120 MHz Analog Out 160 MHz Analog Out Narrow-Band SFDR 10 MHz Analog Out (1 MHz) 10 MHz Analog Out (250 kHz) 10 MHz Analog Out (50 kHz) 40 MHz Analog Out (1 MHz) 40 MHz Analog Out (250 kHz) 40 MHz Analog Out (50 kHz) 80 MHz Analog Out (1 MHz) 80 MHz Analog Out (250 kHz) 80 MHz Analog Out (50 kHz) 120 MHz Analog Out (1 MHz) 120 MHz Analog Out (250 kHz) 120 MHz Analog Out (50 kHz) 160 MHz Analog Out (1 MHz) 160 MHz Analog Out (250 kHz) 160 MHz Analog Out (50 kHz) DAC RESIDUAL PHASE NOISE 19.7 MHz FOUT @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset >1 MHz Offset Min 7 7 33 33 29 29 4 4 Typ Max Unit ns ns SYSCLK Cycles SYSCLK Cycles SYSCLK Cycles SYSCLK Cycles SYSCLK Cycles SYSCLK Cycles Test Conditions/Comments
10 10 -10 5 AVDD - 0.50 65 62 57 56 54 83 85 86 82 84 87 80 82 86 80 82 84 80 82 84
15 +10 0.6 AVDD + 0.50
Bits mA % FS A pF
dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc
122 134 143 150 158 160
dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz
Rev. 0 | Page 7 of 32
AD9540
Parameter 51.84 MHz FOUT @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset > 1 MHz Offset 105 MHz Analog Out @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset >1 MHz Offset 155.52 MHz Analog Out @ 10 Hz Offset @ 100 Hz Offset @ 1 kHz Offset @ 10 kHz Offset @ 100 kHz Offset >1 MHz Offset Min Typ 110 121 135 142 148 153 105 115 126 132 140 145 100 112 123 131 138 144 Max Unit dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz Test Conditions/Comments
1
The SNR of a 14-bit ADC was measured with an ENCODE rate of 105 MSPS and an AIN of 170 MHz. The resultant SNR was known to be limited by the jitter of the clock, not by the noise on the AIN signal. From this SNR value, the jitter affecting the measurement can be back calculated. 2 Driving the PLLREF input buffer. The crystal oscillator section of this input stage performs up to only 30 MHz. 3 The charge pump output compliance range is functionally 0.2 V to (CPVDD - 0.2 V). The value listed here is the compliance range for 5% matching. 4 The input impedance of the CLK1 input is 1500 . However, to provide matching on the clock line, an external 50 load is used. 5 Measured as peak-to-peak between DAC outputs. 6 For a 4.02 k resistor from DRV_RSET to GND. 7 IBIS models for the digital I/O pins available upon request. 8 Assumes a 1 mA load.
Rev. 0 | Page 8 of 32
AD9540
LOOP MEASUREMENT CONDITIONS
622 MHz OC-12 Clock
VCO = Sirenza 190-640T Reference = Wenzel 500-10116 (30.3 MHz) Loop Filter = 10 kHz BW, 60 Phase Margin C1 = 170 nF, R1 = 14.4 , C2 = 5.11 F, R2 = 89.3 , C3 Omitted CP_OUT = 4 mA (Scaler = x8) /R = 2, /M = 1, /N = 1
INPUT R1 C1 C2 C3
04806-0-033
105 MHz Converter Clock
VCO = Sirenza 190-845T Reference = Wenzel 500-10116 (30.3 MHz) Loop Filter = 10 kHz BW, 45 Phase Margin C1 = 117 nF, R1 = 28 , C2 = 1.6 F, R2 = 57.1 , C3 = 53.4 nF CP_OUT = 4 mA (Scaler = x8) /R = 8, /M = 1, /N = 1
R2
OUTPUT
Figure 2. Generic Loop Filter
Rev. 0 | Page 9 of 32
AD9540 ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Analog Supply Voltage (AVDD) Digital Supply Voltage (DVDD) Digital I/O Supply Voltage (DVDD_I/0) Charge Pump Supply Voltage (CPVDD) Maximum Digital Input Voltage Storage Temperature Operating Temperature Range Lead Temperature Range (Soldering 10 sec) Junction Temperature Thermal Resistance (JA) Rating 2V 2V 3.6 V 3.6 V -0.5 V to DVDD_I/O + 0.5 V -65C to +150C -40C to +125C 300C 150C 26C/W
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 10 of 32
AD9540 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
DAC_RSET DRV_RSET CP_RSET REFIN REFIN AGND AGND
37
AVDD
AVDD
48
47
46
45
44
43
42
41
40
39
38
AGND 1 AVDD 2 AGND 3 AVDD 4 IOUT 5 IOUT 6 AVDD 7 AGND 8 I/O_RESET 9 RESET 10 DVDD 11 DGND 12
13
AVDD
CLK2
CLK2
PIN 1 INDICATOR
36 35 34 33 32
CP VCP AGND OUT0 OUT0 VCML AGND CLK1 CLK1 AVDD AGND DVDD
AD9540
TOP VIEW (Not to Scale)
31 30 29 28 27 26 25
14
15
16
17
18
19
20
21
22
23
24
SYNC_OUT
SDI/O
SDO
DVDD_I/O
SYNC_IN/STATUS
I/O_UPDATE
S0
S1
SCLK
S2
DGND
CS
Figure 3. 48-Lead LFCSP Pin Configuration
NOTE: The exposed paddle on this package is an electrical connection (Pin 49) as well as a thermal enhancement. For the device to function properly, the paddle must be attached to analog ground.
Rev. 0 | Page 11 of 32
04947-002
AD9540
Table 3. 48-Lead LFCSP Pin Function Descriptions
Pin No. 1, 3, 8, 26, 30, 34, 37, 43, 49 2, 4, 7, 27, 38, 44, 48 5 6 9 Mnemonic AGND AVDD IOUT IOUT I/O_RESET Description Analog Ground. Analog Core Supply (1.8 V). DAC Analog Output. DAC Analog Complementary Output. Resets the serial port when synchronization is lost in communications but does not reset the device itself (active high). When not being used, this pin should be forced low, because it floats to the threshold value. Master RESET. Clears all accumulators and returns all registers to their default values (active high). Digital Core Supply (1.8 V). Digital Ground. Serial Data Output. Used only when device is programmed for 3-wire serial data mode. Serial Data I/O. When the part is programmed for 3-wire serial data mode, this is input only; in 2-wire mode, it serves as both the input and output. Serial Data Clock. Provides the clock signal for the serial data port. Active Low Signal That Enables Shared Serial Buses. When brought high, the serial port ignores the serial data clocks. Digital Interface Supply (3.3 V). Synchronization Clock Output. Bidirectional Dual Function Pin. Depending on device programming, this pin is either the DDS's synchronization input (allows alignment of multiple subclocks), or the PLL lock detect output signal. This input pin, when set high, transfers the data from the I/O buffers to the internal registers on the rising edge of the internal SYNC_CLK, which can be observed on SYNC_OUT. Clock Frequency and Delay Select Pins. Specify one of eight clock frequency/delay profiles. RF Divider and Internal Clock Input. RF Divider and Internal Clock Input. CML Driver Supply Pin. CML Driver Complementary Output. CML Driver Output. Charge Pump Supply Pin (3.3 V). To minimize noise on the charge pump, isolate this supply from DVDD_I/O. Charge Pump Output. Phase Frequency Detector Reference Input. Phase Frequency Detector Reference Complementary Input. Phase Frequency Detector Oscillator (Feedback) Complementary Input. Phase Frequency Detector Oscillator (Feedback) Input. Charge Pump Current Set (Program Charge Pump Current with a Resistor to AGND). CML Driver Output Current Set (Program CML Output Current with a Resistor to AGND). DAC Output Current Set (Program DAC Output Current with a Resistor to AGND).
10 11, 25 12, 24 13 14 15 16 17 18 19 20 21, 22, 23 28 29 31 32 33 35 36 39 40 41 42 45 46 47
RESET DVDD DGND SDO SDI/O SCLK CS DVDD_I/O SYNC_OUT SYNC_IN/STATUS I/O_UPDATE S0, S1, S2 CLK1 CLK1 VCML OUT0 OUT0 VCP CP REFIN REFIN CLK2 CLK2 CP_RSET DRV_RSET DAC_RSET
NOTE: The exposed paddle on this package is an electrical connection (Pin 49) as well as a thermal enhancement. In order for the device to function properly, the paddle must be attached to analog ground.
Rev. 0 | Page 12 of 32
AD9540 TYPICAL PERFORMANCE CHARACTERISTICS
REF LVL 0dBm 0 -10 -20 -30 1 AP -40 -50 -60 -70 -80 -90 -100 CENTER 10.1MHz 5kHz/ SPAN 50kHz
1
04947-003
DELTA 1 [T1] -85.94dB -2.10420842kHz
1
RBW 100Hz VBW 100Hz 25s SWT
RF ATT 20dB UNIT dB 0
A
REF LVL 0dBm -10 -20 -30
DELTA 1 [T1] -84.94dB 2.10420842kHz
1
RBW 100Hz VBW 100Hz 25s SWT
RF ATT 20dB UNIT dB
A
1 AP -40 -50 -60 -70 -80 -90 -100 CENTER 40.1MHz 5kHz/ SPAN 50kHz
04947-006
1
Figure 4. AD9540 DAC Performance: 400 MSPS Clock, 10 MHz FOUT, 50 kHz Span
REF LVL 0dBm 0 -10 -20 -30 1 AP -40 -50 -60 -70 -80
04947-004
Figure 7. AD9540 DAC Performance: 400 MSPS Clock, 40 MHz FOUT, 50 kHz Span
REF LVL 0dBm 0
A
DELTA 1 [T1] -86.03dB -368.73747495kHz
1
RBW 500Hz VBW 500Hz 20s SWT
RF ATT 20dB UNIT dB -10 -20 -30
DELTA 1 [T1] -80.17dB -200.40080160kHz
1
RBW 500Hz VBW 500Hz 20s SWT
RF ATT 20dB UNIT dB
A
1 AP -40 -50 -60 -70 -80
1
-90 -100
1
-90 -100 CENTER 40.1MHz 100kHz/ SPAN 1MHz
CENTER 10.1MHz
100kHz/
SPAN 1MHz
Figure 5. AD9540 DAC Performance: 400 MSPS Clock, 10 MHz FOUT, 1 MHz Span
REF LVL 0dBm 0 -10 -20 -30 1 AP -40 -50 -60 -70 -80
04947-005
Figure 8. AD9540 DAC Performance: 400 MSPS Clock, 40 MHz FOUT, 1 MHz Span
REF LVL 0dBm 0
A
DELTA 1 [T1] -64.54dB 100.20040080MHz
RBW 10kHz VBW 10kHz 5s SWT
RF ATT 20dB UNIT dB -10 -20 -30
DELTA 1 [T1] -61.61dB 100.20040080MHz
1
RBW 10kHz VBW 10kHz 5s SWT
RF ATT 20dB UNIT dB
A
1
1 AP -40 -50 -60
1
1
-70 -80 -90 -100 START 0Hz 20MHz/ STOP 200MHz
04947-008
-90 -100 START 0Hz 20MHz/ STOP 200MHz
Figure 6. AD9540 DAC Performance: 400 MSPS Clock, 10 MHz FOUT, 200 MHz Span
Figure 9. AD9540 DAC Performance: 400 MSPS Clock, 40 MHz FOUT, 200 MHz Span (Nyquist)
Rev. 0 | Page 13 of 32
04947-007
AD9540
REF LVL 0dBm 0 -10 -20 -30 1 AP -40 -50 -60 -70 -80
04947-009
DELTA 1 [T1] -83.72dB -2.70541082kHz
1
RBW 100Hz VBW 100Hz 25s SWT
RF ATT 20dB UNIT dB 0
A
REF LVL 0dBm -10 -20 -30
DELTA 1 [T1] -85.98dB -2.90581162kHz
1
RBW 100Hz VBW 100Hz 25s SWT
RF ATT 20dB UNIT dB
A
1 AP -40 -50 -60 -70 -80 -90 -100 CENTER 159.5MHz 5kHz/ SPAN 50kHz
1
04947-012
-90 -100 CENTER 100.1MHz
1
5kHz/
SPAN 50kHz
Figure 10. AD9540 DAC Performance: 400 MSPS Clock, 100 MHz FOUT, 50 kHz Span
REF LVL 0dBm 0 -10 -20 -30 1 AP -40 -50 -60 -70 -80
04947-010
Figure 13. AD9540 DAC Performance: 400 MSPS Clock, 160 MHz FOUT, 50 kHz Span
REF LVL 0dBm 0
A 1 A
DELTA 1 [T1] -56.47dB -400.80160321kHz
1
RBW 500Hz VBW 500Hz 20s SWT
RF ATT 20dB UNIT dB -10 -20 -30
DELTA 1 [T1] -82.83dB 262.52505010kHz
RBW 500Hz VBW 500Hz 20s SWT
RF ATT 20dB UNIT dB
1 AP -40 -50
1
-60 -70 -80 -90 -100 CENTER 159.5MHz 100kHz/ SPAN 1MHz
1
04947-013
-90 -100 CENTER 100.1MHz 100kHz/ SPAN 1kHz
Figure 11. AD9540 DAC Performance: 400 MSPS Clock, 100 MHz FOUT,1 MHz Span
REF LVL 0dBm 0 -10 -20 -30 1 AP -40 -50 -60 -70 -80
04947-011
Figure 14. AD9540 DAC Performance: 400 MSPS Clock, 160 MHz FOUT, 1 MHz Span
REF LVL 0dBm 0
A 1 A
DELTA 1 [T1] -48.71dB -400.80160321kHz
1
RBW 10kHz VBW 10kHz 5s SWT
RF ATT 20dB UNIT dB -10 -20 -30
DELTA 1 [T1] -54.90dB -78.55711423MHz
RBW 10kHz VBW 10kHz 5s SWT
RF ATT 20dB UNIT dB
1 AP -40
1
-50 -60 -70 -80 -90 -100 START 0Hz 20MHz/ STOP 200MHz
04947-014
1
-90 -100 START 0Hz 20MHz/ STOP 200MHz
Figure 12. AD9540 DAC Performance: 400 MSPS Clock, 100 MHz FOUT, 200 MHz Span
Figure 15. AD9540 DAC Performance: 400 MSPS Clock, 160 MHz FOUT, 200 MHz Span
Rev. 0 | Page 14 of 32
AD9540
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10
L(f) (dBc/Hz)
04947-023
L(f) (dBc/Hz)
100
1k 10k FREQUENCY (Hz)
100k
1M
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
Figure 16. AD9540 DDS/DAC Residual Phase Noise 400 MHz Clock, 19.7 MHz Output
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10
Figure 19. AD9540 DDS/DAC Residual Phase Noise 400 MHz Clock, 155.52 MHz Output
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10
L(f) (dBc/Hz)
L(f) (dBc/Hz)
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
100
1k 10k FREQUENCY (Hz)
100k
1M 2M
Figure 17. AD9540 DDS/DAC Residual Phase Noise 400 MHz Clock, 51.84 MHz Output
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10
Figure 20. RF Divider and CML Driver Residual Phase Noise (81.92 MHz In, 10.24 MHz Out)
L(f) (dBc/Hz)
L(f) (dBc/Hz)
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
100
1k 10k FREQUENCY (Hz)
100k
1M 2M
Figure 18. AD9540 DDS/DAC Residual Phase Noise 400 MHz Clock, 105.3 MHz Output
Figure 21. RF Divider and CML Driver Residual Phase Noise (157.6 MHz In, 19.7 MHz Out)
Rev. 0 | Page 15 of 32
04947-0-028
04947-025
04947-0-027
04947-024
04947-026
AD9540
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10
L(f) (dBc/Hz)
04947-029
L(f) (dBc/Hz)
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
Figure 22. RF Divider and CML Driver Residual Phase Noise (410.4 MHz In, 51.3 MHz Out)
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10
Figure 25. RF Divider and CML Driver Residual Phase Noise (1240 MHz In, 155 MHz Out)
L(f) (dBc/Hz)
04947-030
L(f) (dBc/Hz)
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
Figure 23. RF Divider and CML Driver Residual Phase Noise (842.4 MHz In, 105.3 MHz Out)
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10
Figure 26. RF Divider and CML Driver Residual Phase Noise (1680 MHz In, 210 MHz Out)
L(f) (dBc/Hz)
04947-031
L(f) (dBc/Hz)
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
Figure 24. RF Divider and CML Driver Residual Phase Noise (983.04 MHz In, 122.88 MHz Out)
Figure 27. RF Divider and CML Driver Residual Phase Noise (1966.08 MHz In, 491.52 MHz Out)
Rev. 0 | Page 16 of 32
04947-034
04947-033
04947-032
AD9540
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 10
L(f) (dBc/Hz)
L(f) (dBc/Hz)
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
100
1k
10k 100k FREQUENCY (Hz)
1M
20M
Figure 28. RF Divider and CML Driver Residual Phase Noise (2488 MHz In, 622 MHz Out)
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 10
Figure 30. Total System Phase Noise for 210 MHz Converter Clock
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 10
L(f) (dBc/Hz)
L(f) (dBc/Hz)
04947-0-036
100
1k
10k 100k FREQUENCY (Hz)
1M
20M
100
1k
10k 100k FREQUENCY (Hz)
1M
20M
Figure 29. Total System Phase Noise for 105 MHz Converter Clock
Figure 31. Total System Phase Noise for 622 MHz OC-12 Clock
Rev. 0 | Page 17 of 32
04947-0-038
04947-0-037
04947-035
AD9540 TYPICAL APPLICATION CIRCUITS
PHASE DETECTOR 25MHz CRYSTAL
/M /N
REFIN CHARGE PUMP CLK2 VCO
400MHz
CML DRIVER
AD9540
DDS DAC
/R
CLOCK1
04947-015
CLOCK1'
Figure 32. Dual Clock Configuration
EXTERNAL REFERENCE
PHASE DETECTOR
/M /N
REFIN CHARGE PUMP CLK2 VCO
622MHz
/R
CML DRIVER CLOCK1
04947-016
AD9540
DDS DAC
CLOCK2
Figure 33. Optical Networking Clock
APPLICATION CIRCUIT DESCRIPTIONS
Dual Clock Configuration: AD9540 Configured in a Dual-Clock Configuration In this loop, M = 1, N = 16, and R = 4. The DDS tuning word is also equals to 1/4, so that the frequency of CLOCK 1' equals the frequency of CLOCK 1. Phase adjustments in the DDS provide 14-bit programmable rising edge delay capability of CLOCK 1' with respect to CLOCK 1 (see Figure 32). Optical Networking Clock: AD9540 Configured as an Optical Networking Clock The loop can be used to generate a 622 MHz clock for OC12. The DDS can be programmed to output 8 kHz to serve as a base reference for other circuits in the subsystem (see Figure 33).
Rev. 0 | Page 18 of 32
AD9540 GENERAL DESCRIPTION
PLL CIRCUITRY
The AD9540 includes an RF divider (divide-by-R), a 48-bit DDS core, a 14-bit programmable delay adjustment, a 10-bit DAC, a phase frequency detector, and a programmable output current charge pump. Incorporating these blocks together, users can generate many useful circuits for clock synthesis. A few simple examples are shown in the Typical Performance Characteristics section. The RF divider accepts differential or single-ended signals up to 2.7 GHz on the CLK1 input pin. The RF divider also supplies the SYSCLK input to the DDS. Because the DDS operates only up to 400 MSPS, device function requires that for any CLK1 signal > 400 MHz, the RF divider must be engaged. The RF divider can be programmed to take values of 1, 2, 4, or 8. The ratio for the divider is programmed in the control register. The output of the divider can be routed to the input of the on-chip CML driver. For lower frequency input signals, it is possible to use the divider to divide the input signal to the CML driver and to use the undivided input of the divider as the SYSCLK input to the DDS, or vice versa. In all cases, the clock to the DDS should not exceed 400 MSPS. The on-chip phase frequency detector has two differential inputs, REFIN (the reference input) and CLK2 (the feedback or oscillator input). These differential inputs can be driven by single-ended signals. When doing so, tie the unused input through a 100 pF capacitor to the analog supply (AVDD). The maximum speed of the phase frequency detector inputs is 200 MHz. Each of the inputs has a buffer and a divider (/M on REFIN and /N on CLK2) that operates up to 655 MHz. If the signal exceeds 200 MHz, the divider must be used. The dividers are programmed through the control registers and take any integer value between 1 and 16. The REFIN input also has the option of engaging an in-line oscillator circuit. Engaging this circuit means that the REFIN input can be driven with a crystal in the range of 20 MHz REFIN 30 MHz. The charge pump outputs a current in response to an error signal generated in the phase frequency detector. The output current is programmed through by placing a resistor (CP_RSET) from the CP_RSET pin to ground. The value is dictated by:
CP_IOUT =
1.55 CP_RSET
CML DRIVER
An on-chip current mode logic (CML) driver is also included. This CML driver generates very low jitter clock edges. The outputs of the CML driver are current outputs that drive PECL levels when terminated into a 100 load. The continuous output current of the driver is programmed by attaching a resistor from the DRV_RSET pin to ground (nominally 4.02 k for a continuous current of 7.2 mA). An optional on-chip current programming resistor is enabled by setting a bit in the control register. The rising edge and falling edge slew rates are independently programmable to help control overshoot and ringing by the application of surge current during rising edge and falling edge transitions (see Figure 34). There is a default surge current of 7.6 mA on the rising edge and of 4.05 mA on the falling edge. Bits in the control register enable additional rising edge and falling edge surge current, as well disable the default surge current (see the Control Function Register Descriptions section for details). The CML driver can be driven by: * * * RF divider input (CLK1 directly to the CML driver) RF divider output CLK2 input
RISING EDGE SURGE
I(t)
CONTINUOUS
CONTINUOUS
FALLING EDGE SURGE
~250ps
~250ps
t
Figure 34. Rising Edge and Falling Edge Surge Current Out of the CML Clock Driver, as Opposed to the Steady State Continuous Current
This sets the charge pump's reference output current. Also, a programmable scaler multiplies this base value by any integer from 1 to 8, programmable through the CP current scale bits in the Control Function Register 2, CFR2<2:0>.
Rev. 0 | Page 19 of 32
04947-017
AD9540
DDS AND DAC
The precision frequency division within the device is accomplished using DDS technology. The DDS can control the digital phase relationships by clocking a 48-bit accumulator. The incremental value loaded into the accumulator, known as the frequency tuning word, controls the overflow rate of the accumulator. Similar to a sine wave completing a 2 radian revolution, the overflow of the accumulator is cyclical in nature and generates a fundamental frequency according to
fo = FTW x ( f s ) 2 48
{0 FTW 2 47 }
The instantaneous phase of the sine wave is therefore the output of the phase accumulator block. This signal may be phase-offset by programming an additive digital phase that is added to each phase sample coming out of the accumulator. These instantaneous phase values are then piped through a phase-to-amplitude conversion (sometimes called an angle-toamplitude conversion or AAC) block. This algorithm follows a cos(x) relationship, where x is the phase coming out of the phase offset block, normalized to 2.
Finally, the amplitude words are piped to a 10-bit DAC. Because the DAC is a sampled data system, the output is a reconstructed sine wave that needs to be filtered to take high frequency images out of the spectrum. The DAC is a current steering DAC that is AVDD referenced. To get a measurable voltage output, the DAC outputs must be terminated through a load resistor to AVDD, typically 50 . At positive full scale, IOUT sinks no current and the voltage drop across the load resistor is 0. However, the IOUT output sinks the DAC's programmed full-scale output current, causing the maximum output voltage drop across the load resistor. At negative full-scale, the situation is reversed and IOUT sinks the full-scale current (and generates the maximum drop across the load resistor), while IOUT sinks no current (and generates no voltage drop). At midscale, the outputs sink equal amounts of current, generating equal voltage drops.
Rev. 0 | Page 20 of 32
AD9540 MODES OF OPERATION
SELECTABLE CLOCK FREQUENCIES AND SELECTABLE EDGE DELAY
Because the precision driver is implemented using a DDS, it is possible to store multiple clock frequency words to enable externally switchable clock frequencies. The phase accumulator runs at a fixed frequency, according to the active profile's clock frequency word. Likewise, any delay applied to the rising and falling edges is a static value that comes from the delay shift word of the active profile. The device has eight different phase/frequency profiles, each with its own 48-bit clock frequency word and 14-bit delay shift word. Profiles are selected by applying their digital value on the clock select (S0, S1, and S2) pins. It is not possible to use the phase offset of one profile and the frequency tuning word of another.
Automatic Synchronization
In automatic synchronization mode, the device is placed in slave mode and automatically aligns the internal SYNC_CLK to a master SYNC_CLK signal, supplied on the SYNC_IN input. When this bit is enabled, the STATUS is not available as an output; however, an out-of-lock condition can be detected by reading Control Function Register 1 and checking the status of the STATUS_Error bit. The automatic synchronization function is enabled by setting the Control Function Register 1 automatic synchronization bit, CFR1<3>. To employ this function at higher clock rates (SYNC_CLK > 62.5 MHz, SYSCLK > 250 MHz), the high speed sync enable bit (CFR1<0>) should be set as well.
Manual Synchronization, Hardware Controlled
In this mode, the user controls the timing relationship of the SYNC_CLK with respect to SYSCLK. When hardware manual synchronization is enabled, the SYNC_IN/ STATUS pin becomes a digital input. For each rising edge detected on the SYNC_IN input, the device advances the SYNC_IN rising edge by one SYSCLK period. When this bit is enabled, the STATUS is not available as an output; however, an out-of-lock condition can be detected by reading Control Function Register 1 and checking the status of the STATUS_Error bit. This synchronization function is enabled by setting the hardware manual synchronization enable bit, CFR1<1>.
SYNCHRONIZATION MODES FOR MULTIPLE DEVICES
In a DDS system, the SYNC_CLK is derived internally from the master system clock, SYSCLK, with a /4 divider. Because the divider does not power up to a known state, multiple devices in a system might have staggered clock phase relationships, because each device can potentially generate the SYNC_CLK rising edge from any one of four rising edges of SYSCLK. This ambiguity can be resolved by employing digital synchronization logic to control the phase relationships of the derived clocks among different devices in the system. Note that the synchronization functions included on the AD9540 control only the timing relationships among different digital clocks. They do not compensate for the analog timing delay on the system clock due to mismatched phase relationships on the input clock, CLK1 (see Figure 35).
SYNCHRONIZATION FUNCTIONS CAN ALIGN DIGITAL CLOCK RELATIONSHIPS, THEY CANNOT DESKEW THE EDGES OF CLOCKS
Manual Synchronization, Software Controlled
In this mode, the user controls the timing relationship between SYNC_CLK and SYSCLK through software programming. When the software manual synchronization bit (CFR1<2>) is set high, the SYNC_CLK is advanced by one SYSCLK cycle. Once this operation is complete, the bit is cleared. The user can set this bit repeatedly to advance the SYNC_CLK rising edge multiple times. Because the operation does not use the SYNC_IN/ STATUS pin as a SYNC_IN input, the STATUS signal can be monitored on the STATUS pin during this operation.
SYSCLK DUT1 SYNC CLK DUT1 SYSCLK DUT2 SYNC CLK DUT2 w/o SYNC_CLK ALIGNED
0
1
2
3
0
3
0
1
2
3
Figure 35. Synchronization Functions: Capabilities and Limitations
04947-018
SYNC CLK DUT2 w/ SYNC_CLK ALIGNED
Rev. 0 | Page 21 of 32
AD9540 SERIAL PORT OPERATION
An AD9540 serial data-port communication cycle has two phases. Phase 1 is the instruction cycle, which is the writing of an instruction byte to the AD9540, coincident with the first eight SCLK rising edges. The instruction byte provides the AD9540 serial port controller with information regarding the data transfer cycle, which is Phase 2 of the communication cycle. The Phase 1 instruction byte defines whether the upcoming data transfer is read or write and the serial address of the register being accessed. The first eight SCLK rising edges of each communication cycle are used to write the instruction byte into the AD9540. The remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual data transfer between the AD9540 and the system controller. The number of bytes transferred during Phase 2 of the communication cycle is a function of the .
INSTRUCTION CYCLE CS SCLK SDI/O I7 I6 I5 I4 I3 I2 I1 I0 D7 D6 D5 D4 D3 D2 D1 D0
04947-019
register being accessed. For example, when accessing Control Function Register 2, which is four bytes wide, Phase 2 requires that four bytes be transferred. If accessing a frequency tuning word, which is six bytes wide, Phase 2 requires that six bytes be transferred. After transferring all data bytes per the instruction, the communication cycle is completed. At the completion of any communication cycle, the AD9540 serial port controller expects the next eight rising SCLK edges to be the instruction byte of the next communication cycle. All data input to the AD9540 is registered on the rising edge of SCLK. All data is driven out of the AD9540 on the falling edge of SCLK. Figure 36 through Figure 39 are useful in understanding the general operation of the AD9540 serial port.
DATA TRANSFER CYCLE
Figure 36. Serial Port Write Timing--Clock Stall Low
INSTRUCTION CYCLE CS SCLK SDI/O SDO I7 I6 I5 I4 I3 I2 I1 I0 DO 7
DATA TRANSFER CYCLE
DON'T CARE DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0
04947-020 04947-022
Figure 37. 3-Wire Serial Port Read Timing--Clock Stall Low
INSTRUCTION CYCLE CS SCLK SDI/O I7 I6 I5 I4 I3 I2 I1 I0 D7
DATA TRANSFER CYCLE
D6
D5
D4
D3
D2
D1
D0
Figure 38. Serial Port Write Timing-Clock Stall High
INSTRUCTION CYCLE CS SCLK SDI/O I7 I6 I5 I4 I3 I2 I1 I0
DATA TRANSFER CYCLE
DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0
Figure 39. 2-Wire Serial Port Read Timing-Clock Stall High
Rev. 0 | Page 22 of 32
04947-021
AD9540
INSTRUCTION BYTE
The instruction byte contains the following information:
Table 4.
D7 R/Wb D6 X D5 X D4 A4 D3 A3 D2 A2 D1 A1 D0 A0
MSB/LSB TRANSFERS
The AD9540 serial port can support both most significant bit (MSB) first or least significant bit (LSB) first data formats. This functionality is controlled by the LSB first bit in Control Register 1 (CFR1<15>). The default value of this bit is low (MSB first). When CFR1 <15> is set high, the AD9540 serial port is in LSB first format. The instruction byte must be written in the format indicated by CFR1 <15>. If the AD9540 is in LSB first mode, the instruction byte must be written from LSB to MSB. However, the instruction byte phase of the communications cycle still precedes the data transfer cycle. For MSB first operation, all data written to (read from) the AD9540 are in MSB first order. If the LSB mode is active, all data written to (read from) the AD9540 are in LSB first order.
TPRE CS TSCLKW TDSU SCLK TDHLD SDI/O SYMBOL TPRE TSCLKW TDSU TDHLD FIRST BIT MIN 6ns 40ns 6.5ns 0ns SECOND BIT DEFINITION
04806-0-034 04806-0-035
R/Wb--Bit 7 of the instruction byte determines whether a read or write data transfer occurs after the instruction byte write. Logic 1 indicates a read operation. Logic 0 indicates a write operation. X, X--Bits 6 and 5 of the instruction byte are Don't Care. A4, A3, A2, A1, and A0--Bits 4, 3, 2, 1, and 0 of the instruction byte determine which register is accessed during the data transfer portion of the communications cycle.
SERIAL INTERFACE PORT PIN DESCRIPTION
SCLK--Serial Clock. The serial clock pin is used to synchronize data to and from the AD9540 and to run the internal state machines. The SCLK maximum frequency is 25 MHz. CS--Chip Select Bar. CS is the active low input that allows more than one device on the same serial communications line. The SDO and SDI/O pins go to a high impedance state when this input is high. If driven high during any communications cycle, that cycle is suspended until CS is reactivated low. Chip select can be tied low in systems that maintain control of SCLK. SDI/O--Serial Data Input/Output. Data is always written to the AD9540 on this pin. However, this pin can be used as a bidirectional data line. CFR1<7> controls the configuration of this pin. The default value (0) configures the SDI/O pin as bidirectional. SDO--Serial Data Out. Data is read from this pin for protocols that use separate lines for transmitting and receiving data. When the AD9540 operates in a single bidirectional I/O mode, this pin does not output data and is set to a high impedance state. I/O_RESET--A high signal on this pin resets the I/O port state machines without affecting the addressable registers' contents. An active high input on the I/O_RESET pin causes the current communication cycle to abort. After I/O_RESET returns low (0), another communication cycle can begin, starting with the instruction byte write. Note that when not in use, this pin should be forced low, because it floats to the threshold value.
CS SETUP TIME PERIOD OF SERIAL DATA CLOCK (WRITE) SERIAL DATA SETUP TIME SERIAL DATA HOLD TIME
Figure 40. Timing Diagram for Data Write to AD9540
CS TSCLKR
SCLK SDI/O SDO
FIRST BIT TDV SYMBOL TDV TSCLKR MAX 40ns DEFINITION
SECOND BIT
DATA VALID TIME
400ns PERIOD OF SERIAL DATA CLOCK (READ)
Figure 41. Timing Diagram for Data Read to AD9540
Rev. 0 | Page 23 of 32
AD9540 REGISTER MAP AND DESCRIPTION
Table 5. Register Map
Register Name (Serial Address) Control Function Register 1 (CFR1) (0x00) Bit Range <31:24> <23:16> Default Value/ Profile 0x00 0x00
Bit 7 (MSB) Open1 LOAD SRR @ I/O_UPDATE
<15:8>
LSB First
<7:0>
Dig. PowerDown
Control Function Register 2 (CFR2) (0x01)
<39:32>
DAC PowerDown
Bit 6 Open1 AutoClear Freq. Accum. SDI/O Input Only PFD Input PowerDown Open1
Bit 5 Open1 AutoClear Phase Accum. Open1
Bit 4 Open1 Enable Sine Output Open1
Bit 3 Open1 Clear Freq. Accum. Open1
Bit 2 Open1 Clear Phase Accum. Open1
Bit 1 Open1 Open1
Bit 0 (LSB) STATUS_Error Open1
Open1
Open1
0x00
REFIN Cyrstal Enable Open1
SYNC_CLK Out Disable Open1
Auto Sync Multiple AD9540s Open1
Software Manual Sync Open1
Hardware Manual Sync Internal Band Gap PowerDown PLL Lock Detect Enable Slew Rate Control
High Speed Sync Enable
0x00
Internal CML Driver DRV_RSET PLL Lock Detect Mode
0x00
<31:24>
Clock Driver Rising Edge <31:29>
Clock Driver Falling Edge Control <28:26>
0x00
<23:16>
RF Divider PowerDown
<15:8> <7:0> Rising Delta Frequency Tuning Word (RDFTW) (0x02) Falling Delta Frequency Tuning Word (FDFTW) (0x03) Rising Sweep Ramp Rate (RSRR) (0x04) Falling Sweep Ramp Rate (FSRR) (0x05) <23:16> <15:8> <7:0> <23:16> <15:8> <7:0> <15:8> <7:0> <15:8> <7:0>
Open1
Clock Driver Input RF Div CLK1 Clock Select <19:18> Mux Bit Driver PowerDown Divider M Control <15:12> Divider N Control <11:8> Open1 CP Full PD CP Quick CP Current Scale <2:0> CP Polarity PD Rising Delta Frequency Tuning Word <23:16> Rising Delta Frequency Tuning Word <15:8> Rising Delta Frequency Tuning Word <7:0> RF Divider Ratio <22:21> Falling Delta Frequency Tuning Word <23:16> Falling Delta Frequency Tuning Word <15:8> Falling Delta Frequency Tuning Word <7:0> Rising Sweep Ramp Rate <15:8> Rising Sweep Ramp Rate <7:0> Rising Sweep Ramp Rate <15:8> Rising Sweep Ramp Rate <7:0>
0x78
0x00 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1
In all cases, Open bits must be written to 0.
Rev. 0 | Page 24 of 32
AD9540
Default Value/ Profile 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Register Name (Serial Address) Profile Control Register 0 (PCR0) (0x06)
Profile Control Register 1 (PCR1) (0x07)
Profile Control Register 2 (PCR2) (0x08)
Profile Control Register 3 (PCR3) (0x09)
Bit Range <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0> <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0> <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0> <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0>
Bit 7 (MSB)
Bit 6 Open1
Bit 5
Open1
Open1
Open1
Bit 4 Bit 3 Bit 2 Bit 1 Phase Offset Word 0 (POW0) <13:8> Phase Offset Word 0 (POW0) <7:0> Frequency Tuning Word 0 (FTW0) <47:40> Frequency Tuning Word 0 (FTW0) <39:32> Frequency Tuning Word 0 (FTW0) <31:24> Frequency Tuning Word 0 (FTW0) <23:16> Frequency Tuning Word. 0 (FTW0) <15:8> Frequency Tuning Word 0 (FTW0) <7:0> Phase Offset Word 1 (POW1) <13:8> Phase Offset Word 1 (POW1) <7:0> Frequency Tuning Word 1 (FTW1) <47:40> Frequency Tuning Word 1 (FTW1) <39:32> Frequency Tuning Word 1 (FTW1) <31:24> Frequency Tuning Word 1 (FTW1) <23:16> Frequency Tuning Word 1 (FTW1) <15:8> Frequency Tuning Word 1 (FTW1) <7:0> Phase Offset Word 2 (POW2) <13:8> Phase Offset Word 2 (POW2) <7:0> Frequency Tuning Word 2 (FTW1) <47:40> Frequency Tuning Word 2 (FTW2) <39:32> Frequency Tuning Word 2 (FTW2) <31:24> Frequency Tuning Word 2 (FTW2) <23:16> Frequency Tuning Word 2 (FTW2) <15:8> Frequency Tuning Word 2 (FTW2) <7:0> Phase Offset Word 3 (POW3) <13:8> Phase Offset Word 3 (POW3) <7:0> Frequency Tuning Word 3 (FTW3) <47:40> Frequency Tuning Word 3 (FTW3) <39:32> Frequency Tuning Word 3 (FTW3) <31:24> Frequency Tuning Word 3 (FTW3) <23:16> Frequency Tuning Word 3 (FTW3) <15:8> Frequency Tuning Word 3 (FTW3) <7:0>
Bit 0 (LSB)
1
In all cases, Open bits must be written to 0.
Rev. 0 | Page 25 of 32
AD9540
Register Name (Serial Address) Profile Control Register 4 (PCR4) (0x0A) Default Value/ Profile 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Profile Control Register 5 (PCR5) (0x0B)
Profile Control Register 6 (PCR6) (0x0C)
Profile Control Register 7 (PCR7) (0x0D)
Bit Range <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0> <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0> <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0> <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0>
Bit 7 Bit 6 (MSB) Open1
Open1
Open1
Open1
Bit 4 Bit 3 Bit 2 Bit 1 Phase Offset Word 4 (POW4) <13:8> Phase Offset Word 4 (POW4) <7:0> Frequency Tuning Word. 4 (FTW4) <47:40> Frequency Tuning Word 4 (FTW4) <39:32> Frequency Tuning Word 4 (FTW4) <31:24> Frequency Tuning Word 4 (FTW4) <23:16> Frequency Tuning Word 4 (FTW4) <15:8> Frequency Tuning Word 4 (FTW4) <7:0> Phase Offset Word 5 (POW5) <13:8> Phase Offset Word 5 (POW5) <7:0> Frequency Tuning Word 5 (FTW5) <47:40> Frequency Tuning Word 5 (FTW5) <39:32> Frequency Tuning Word 5 (FTW5) <31:24> Frequency Tuning Word 5 (FTW5) <23:16> Frequency Tuning Word 5 (FTW5) <15:8> Frequency Tuning Word 5 (FTW5) <7:0> Phase Offset Word 6 (POW6) <13:8> Phase Offset Word 6 (POW6) <7:0> Frequency Tuning Word 6 (FTW6) <47:40> Frequency Tuning Word 6 (FTW6) <39:32> Frequency Tuning Word 6 (FTW6) <31:24> Frequency Tuning Word 6 (FTW6) <23:16> Frequency Tuning Word 6 (FTW6) <15:8> Frequency Tuning Word 6 (FTW6) <7:0> Phase Offset Word 7 (POW7) <13:8> Phase Offset Word 7 (POW7) <7:0> Frequency Tuning Word 7 (FTW7) <47:40> Frequency Tuning Word 7 (FTW7) <39:32> Frequency Tuning Word 7 (FTW7) <31:24> Frequency Tuning Word 7 (FTW7) <23:16> Frequency Tuning Word 7 (FTW7) <15:8> Frequency Tuning Word 7 (FTW7) <7:0>
Bit 5
Bit 0 (LSB)
1
In all cases, Open bits must be written to 0.
Rev. 0 | Page 26 of 32
AD9540
CONTROL FUNCTION REGISTER DESCRIPTIONS
Control Function Register 1 (CFR1)
This control register is comprised of four bytes, which must be written during a write operation involving CFR1. CFR1 is used to control various functions, features, and operating modes of the AD9540. The functionality of each bit(s) is described below. In general, the bit is named for the function it serves when the bit is set.
CFR1<31:25> Open
CFR1 <22> = 0 (default). Issuing an I/O_UPDATE has no effect on the current state of the frequency accumulator. CFR1 <22> = 1. Issuing an I/O_UPDATE signal to the part clears the current contents of the frequency accumulator for one sync-clock period.
CFR1 <21> Auto-Clear Phase Accumulator
Unused locations. Write a Logic 0.
CFR1<24> STATUS_Error (Read-Only)
This bit enables the auto-clear function for the phase accumulator. The auto-clear function serves as a reset function for the phase accumulator, which then begins accumulating from a known phase value of 0. CFR1<21> = 0 (default). Issuing an I/O_UPDATE has no effect on the current state of the phase accumulator. CFR1<21> = 1. Issuing an I/O_UPDATE clears the current contents of the phase accumulator for one SYNC_CLK period.
CFR1 <20> Enable Sine Output
When the device is operating in automatic synchronization mode or hardware manual synchronization mode the SYNC_IN/STATUS pin behaves as the SYNC_IN. To determine whether or not the PLL has become unlocked while in synchronization mode, this bit serves as a flag to indicate that an unlocked condition has occurred within the phase frequency detector. Once set, the flag stays high until it is cleared by a readback of the value even though the loop might have relocked. Readback of the CFR1 register clears this bit. CFR1<24> = 0 indicates that the loop has maintained lock since the last readback. CFR1<24> = 1 indicates that the loop became unlocked at some point since the last readback of this bit.
CFR1<23> Load Sweep Ramp Rate at I/O_UPDATE, also known as Load SRR @ I/O_UPDATE
Two different trigonometric functions can be used to convert the phase angle to an amplitude value, cosine or sine. This bit selects the function used. CFR1<20> = 0 (default). The phase-to-amplitude conversion block uses a cosine function. CFR1<20> = 1. The phase-to-amplitude conversion block uses a sine function.
CFR1 <19> Clear Frequency Accumulator
The sweep ramp rate is set by entering a value to a downcounter that is clocked by the SYNC_CLK. Each time a new step is taken in the linear sweep algorithm, the ramp rate value is passed from the linear sweep ramp rate register to this downcounter. When set, CFR1<23> enables the user to force the part to restart the countdown sequence for the current linear sweep step by toggling the I/O_UPDATE pin. CFR1<23> = 0 (default). The linear sweep ramp rate countdown value is loaded only upon completion of a countdown sequence. CFR1<23> = 1. The linear sweep ramp rate countdown value is reloaded, if an I/O_UPDATE signal is sent to the part during a sweep.
CFR1<22> Auto-Clear Frequency Accumulator
This bit serves as a static-clear, or a clear-and-hold bit for the frequency accumulator. It prevents the frequency accumulator from incrementing the value as long as it is set. CFR1 <19> = 0 (default). The frequency accumulator operates normally. CFR1 <19> = 1. The frequency accumulator is cleared and held at 0.
CFR1 <18> Clear Phase Accumulator
This bit serves as a static clear, or a clear-and-hold bit for the phase accumulator. It prevents the phase accumulator from incrementing the value as long as it is set. CFR1 <18> = 0 (default). The phase accumulator operates normally. CFR1 <18> = 1. The phase accumulator is cleared and held at 0.
This bit enables the auto-clear function for the frequency accumulator. The auto-clear function serves as a clear and release function for the frequency accumulator (which performs the linear sweep operation) that then begins sweeping from a known value of FTW0.
CFR1 <17:16> Open
Unused locations. Write a Logic 0.
Rev. 0 | Page 27 of 32
AD9540
CFR1 <15> LSB First Serial Data Mode
The serial data transfer to the device can be either MSB first or LSB first. This bit controls that operation. CFR1<15> = 0 (default). Serial data transfer to the device is in MSB first mode. CFR1<15> = 1. Serial data transfer to the device is in LSB first mode.
CFR1<14> SDI/O Input Only (3-Wire Serial Data Mode)
CFR1<5> = 1. The reference input oscillator circuit is enabled, allowing the use of a crystal for the reference of the phase frequency detector.
CFR1<4> SYNC_CLK Disable
If synchronization of multiple devices is not required, the spectral energy resulting from this signal can be reduced by gating the output buffer off. This function gates the internal clock reference SYNC_CLK (SYSCLK / 4) off of the SYNC_OUT pin. CFR1<4> = 0 (default). The SYNC_CLK signal is present on the SYNC_OUT pin and is ready to be ported to other devices. CFR1<4> = 1. The SYNC_CLK signal is gated off, putting the SYNC_OUT pin into a high impedance state.
CFR1<3> Automatic Synchronization
The serial port on the AD9540 can act in 2-wire mode (SCLK and SDI/O) or 3-wire mode (SCLK, SDI/O, and SDO). This bit toggles the serial port between these two modes. CFR1<14> = 0 (default). Serial data transfer to the device is in 2-wire mode. The SDI/O pin is bidirectional. CFR1<14> = 1. Serial data transfer to the device is in 3-wire mode. The SDI/O pin is input only.
CFR1<13:8> Open
Unused locations. Write a Logic 0.
CFR1<7> Digital Power-Down
One of the synchronization modes of the AD9540 forces the DDS core to derive the internal reference from an external reference supplied on the SYNC_IN pin. For details on synchronization modes for the DDS core, see the Synchronization Modes for Multiple Devices section. CFR1<3> = 0 (default). The automatic synchronization function of the DDS core is disabled. CFR1<3> = 1. The automatic synchronization function is on. The device is slaved to an external reference and adjusts the internal SYNC_CLK to match the external reference, which is supplied on the SYNC_IN input.
CFR1<2> Software Manual Synchronization
This bit powers down the digital circuitry not directly related to the I/O port. The I/O port functionality is not suspended, regardless of the state of this bit. CFR1<7> = 0 (default). Digital logic operating as normal. CFR1<7> = 1. All digital logic not directly related to the I/O port is powered down. Internal digital clocks are suspended.
CFR1<6> Phase Frequency Detector Input Power-Down
This bit controls the input buffers on the phase frequency detector. It provides a way to gate external signals from the phase frequency detector. CFR1<6> = 0 (default). Phase frequency detector input buffers are functioning normally. CFR1<6> = 1. Phase frequency detector input buffers are powered down, isolating the phase frequency detector from the outside world.
CFR1<5> REFIN Crystal Enable
Rather than relying on the part to automatically synchronize the internal clocks, the user can program the part to advance the internal SYNC_CLK one system clock cycle. This bit is self clearing and can be set multiple times. CFR1<2> = 0 (default). The SYNC_CLK stays in the current timing relationship to SYSCLK. CFR1<2> = 1. The SYNC_CLK advances the rising and falling edges by one SYSCLK cycle. This bit is then self-cleared.
CFR1<1> Hardware Manual Synchronization
The AD9540 phase frequency detector has an on-chip oscillator circuit. When enabled, the reference input to the phase frequency detector (REFIN/PLLREF) can be driven by a crystal. CFR1<5> = 0 (default). The phase frequency detector reference input operates as a standard analog input.
Similar to the software manual synchronization (CFR1<2>), this function enables the user to advance the SYNC_CLK rising edge by one system clock period. This bit enables the SYNC_IN/STATUS pin as a digital input. Once enabled, every rising edge on the SYNC_IN input advances the SYNC_CLK by one SYCLK period. While enabled, the STATUS signal is not available on an external pin. However, loop out-of-lock events trigger a flag in the control register (CFR1<24>).
Rev. 0 | Page 28 of 32
AD9540
CFR1<1> = 0 (default). The hardware manual synchronization function is disabled. Either the part is outputting the STATUS (CFR1<3> = 0) or it is using the SYNC_IN to slave the SYNC_CLK signal to an external reference provided on SYNC_IN (CFR1<3> = 1). CFR1<1> = 1. The SYNC_IN/STATUS pin is set as a digital input. Each subsequent rising edge on this pin advances the SYNC_CLK rising edge by one SYSCLK period.
CFR1<0> High Speed Synchronization Enable Bit
CFR2<32> = 0 (default). The DRV_RSET pin is enabled, and an external resistor must be attached to the CP_RSET pin to program the output current. CFR2<32> = 1. The CML current is programmed by the internal resistor and ignores the resistor on the DRV_RSET pin.
CFR2<31:29> Clock Driver Rising Edge
This bit enables extra functionality in the auto synchronization algorithm, which enables the device to synchronize high speed clocks (SYNC_CLK > 62.5 MHz). CFR1<0> = 0 (default). High speed synchronization is disabled. CFR1<0> = 1. High speed synchronization is enabled.
These bits control the slew rate of the CML clock driver output's rising edge. When these bits are on, additional current is sent to the output driver to increase the rising edge slew rate capability. Table 6 describes how the bits increase the current. Note that the additional current is on only during the rising edge of the waveform for approximately 250 ps, not during the entire transition.
Table 6. CML Clock Driver Rising Edge Slew Rate Control Bits and Associated Surge Current
CFR2<31> = 1 CFR2<30> = 1 CFR2<29> = 1 7.6 mA 3.8 mA 1.9 mA
Control Function Register 2 (CFR2)
The Control Register 2 is comprised of five bytes, which must be written during a write operation involving CFR2. With some minor exceptions, the CFR2 primarily controls analog and timing functions on the AD9540.
CFR2<39> DAC Power-Down Bit
CFR2<28:26> Clock Driver Falling Edge Control
This bit powers down the DAC portion of the AD9540 and puts it into the lowest power dissipation state. CFR2<39> = 0 (default). DAC is powered on and operating. CFR2<39> = 1. DAC is powered down and the output is in a high impedance state.
CFR2<38:34> Open
These bits control the slew rate of the CML clock driver output's falling edge. When these bits are on, additional current is sent to the output driver to increase the rising edge slew rate capability. Table 7 describes how the bits increase the current. Note that the additional current is on only during the rising edge of the waveform, for approximately 250 ps, not during the entire transition.
Table 7. CML Clock Drive Falling Edge Slew Rate Control Bits and Associated Surge Current
CFR2<28> = 1 CFR2<30> = 1 CFR2<29> = 1 5.4 mA 2.7 mA 1.35 mA
Unused locations. Write a Logic 0.
CFR2<33> Internal Band Gap Power-Down
To shut off all internal quiescent current, the band gap needs to be powered down. This is normally not done because it takes a long time (~10 ms) for the band gap to power up and settle to its final value. CFR2<33> = 0. Even when all other sections are powered down, the band gap is powered up and is providing a regulated voltage. CFR2<33> = 1. The band gap is powered down.
CFR2<32> Internal CML Driver DRV_RSET
CFR2<25> PLL Lock Detect Enable
This bit enables the SYNC_IN/STATUS pin as a lock detect output for the PLL. CFR2<25> = 0 (default).The STATUS_DETECT signal is disabled. CFR2<25> = 1. The STATUS_DETECT signal is enabled.
CFR2<24> PLL Lock Detect Mode
To program the CML driver's output current, a resistor must be placed between the DRV_RSET pin and ground. This bit enables an internal resistor to program the output current of the driver.
This bit toggles the modes of the PLL lock detect function. The lock detect can either be a status indicator (locked or unlocked) or it can indicate a lead-lag relationship between the two phase frequency detector inputs.
Rev. 0 | Page 29 of 32
AD9540
CFR2<24> = 0 (default). The lock detect acts as a status indicator (PLL is locked 0 or unlocked 1). CFR2<24> = 1. The lock detect acts as a lead-lag indicator. A 1 on the STATUS pin means that the CLK2 pin lags the reference. A 0 means that the CLK2 pin leads the reference.
CFR2<23> RF Divider Power-Down
rising edge and a 4.05 mA surge current to the falling edge. This bit disables all slew rate enhancement surge current, including the default values. CFR2<17> = 0 (default). The CML driver applies default surge current to rising and falling edges. CFR2<17> = 1. Driver applies no surge current during transitions. The only current is the continuous current.
CFR2<16> RF Divider CLK1 Mux
This bit powers down the RF divider to save power when not in use. CFR2<23> = 0 (default). The RF divider is on. CFR2<23> = 1. The RF divider is powered down and an alternate path between the CLK1 inputs and SYSCLK is enabled.
CFR2<22:21> RF Divider Ratio
This bit toggles the mux to control whether the RF divider output or input is supplying SYSCLK to the device. CFR2<16> = 0 (default). The RF divider output supplies the DDS SYSCLK. CFR2<16> = 1. The RF divider input supplies the DDS SYSCLK (bypass the divider). Note that regardless of the condition of the configuration of the clock input, the DDS SYSCLK must not exceed the maximum rated clock speed.
CFR2<15:12> REFIN Divider (/M) Control Bits
These two bits control the RF divider ratio (/R). CFR2<22:21> = 11 (default). RF Divider R = 8. CFR2<22:21> = 10. RF Divider R = 4. CFR2<22:21> = 01. RF Divider R = 2. CFR2<22:21> = 00. RF Divider R = 1. Note that this is not the same as bypassing the RF divider.
CFR2<20> Clock Driver Power-Down
These four bits set the REFIN divider (/M) ratio where M is a value = 1 to 16 and CFR2<15:12> = 0000 means that M = 1 and CFR2<15:12> = 1111 means that M = 16 or simply, M = CFR2<15:12> + 1.
Table 8. REFIN Divider Values (/M)
CFR2<15:12> = 0000 0001 0010 0011 0100 0101 0110 0111 M= 1 2 3 4 5 6 7 8 CFR2<15:12> = 1000 1001 1010 1011 1100 1101 1110 1111 M= 9 10 11 12 13 14 15 16
This bit powers down the CML clock driver circuit. CFR2<20> =1 (default). The CML clock driver circuit is powered down. CFR2<20> = 0. The CML clock driver is powered up.
CFR2<19:18> Clock Driver Input Select
These bits control the mux on the input for the CML clock driver. CFR2<19:18> = 00. The CML clock driver is disconnected from all inputs (and does not toggle). CFR2<19:18> = 01. The CML clock driver is driven by the CLK2 input pin. CFR2<19:18> = 10 (default). The CML clock driver is driven by the output of the RF divider. CFR2<19:18> = 11. The CML clock driver is driven by the input of the RF divider
CFR2<17> Slew Rate Control Bit
CFR2<11:8> CLK2 Divider (/N) Control Bits
These 4 bits set the CLK2 divider (/N) ratio where N is a value = 1 to 16 and CFR2<11:8> = 0000 means that N = 1 and CFR2<11:8> = 1111 means that N = 16 or N = CFR2<11:8> + 1.
Table 9. CLK2 Input Divider Values (/N)
CFR2<15:12> = 0000 0001 0010 0011 0100 0101 0110 0111 N= 1 2 3 4 5 6 7 8 CFR2<11:8> = 1000 1001 1010 1011 1100 1101 1110 1111 N= 9 10 11 12 13 14 15 16
Even without the additional surge current supplied by the rising edge slew rate control bits and the falling edge slew rate control bits, the device applies a default 7.6 mA surge current to the
Rev. 0 | Page 30 of 32
AD9540
CFR2<7:6> Open
CFR2<4> = 1. The charge pump is powered down completely.
CFR2<3> Charge Pump Quick Power-Down
Unused locations. Write a Logic 0.
CFR2<5> CP Polarity
This bit sets the polarity of the charge pump in response to a ground referenced or a supply referenced VCO. CFR2<5> = 0 (default). The charge pump is configured to operate with a supply referenced VCO. If CLK2 lags REFIN, the charge pump attempts to drive the VCO control node voltage higher. If CLK2 leads REFIN, the charge pump attempts to drive the VCO control node voltage lower. CFR2<5> = 1. The charge pump is configured to operate with a ground referenced VCO. If CLK2 lags REFIN, the charge pump attempts to drive the VCO control node voltage lower. If CLK2 leads REFIN, the charge pump attempts to drive the VCO control node voltage higher.
CFR2<4> Charge Pump Full Power-Down
Rather than power down the charge pump, which can take a long time to recover from, a quick power-down mode that powers down only the charge pump output buffer is included. While this does not reduce the power consumption significantly, it does shut off the output to the charge pump and allows it to come back on rapidly. CFR2<3> = 0 (default). The charge pump is powered on and operating normally. CFR2<3> = 1. The charge pump is on and running, but the output buffer is powered down.
CFR2<2:0> Charge Pump Current Scale
This bit, when set, puts the charge pump into a full power-down mode. CFR2<4> = 0 (default). The charge pump is powered on and operating normally.
A base output current from the charge pump is determined by a resistor connected from the CP_RSET pin to ground (see the PLL Circuitry section). However, it is possible to multiply the charge pump output current by a value from 1:8 by programming these bits. The charge pump output current is scaled by CFR2<2:0> +1.
CFR2<2:0> = 000 (default)
Scale factor = 1 to CFR2<2:0> = 111 (8).
Rev. 0 | Page 31 of 32
AD9540 OUTLINE DIMENSIONS
7.00 BSC SQ 0.60 MAX 0.60 MAX
37 36
0.30 0.23 0.18
48 1
PIN 1 INDICATOR
PIN 1 INDICATOR
TOP VIEW
6.75 BSC SQ
EXPOSED PAD
(BOTTOM VIEW)
5.25 5.10 SQ 4.95
0.50 0.40 0.30
25 24
12 13
0.25 MIN 5.50 REF
1.00 0.85 0.80
12 MAX
0.80 MAX 0.65 TYP 0.05 MAX 0.02 NOM 0.50 BSC
SEATING PLANE
0.20 REF
COPLANARITY 0.08
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2
Figure 42. 48-Lead Lead Frame Chip Scale [LFCSP] 7 mm x 7 mm Body (CP-48) Dimensions shown in millimeters
ORDERING GUIDE
Model AD9540BCPZ1 AD9540BCPZ-REEL1 AD9540/PCB Temperature Range -40C to +85C -40C to +85C Package Description 48-Lead Lead Frame Chip Scale Package (LFCSP) 48-Lead Lead Frame Chip Scale Package (LFCSP) Tape and Reel Evaluation Board Package Option CP-48 CP-48
1
Z = Pb-free part.
(c) 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04947-0-7/04(0)
Rev. 0 | Page 32 of 32


▲Up To Search▲   

 
Price & Availability of AD9540

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X